skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zu, Wuzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shaping 3D objects from 2D sheets enables form and function in diverse areas from art to engineering. Here we introduce kuttsukigami, which exploits sheet-sheet adhesion to create structure. The technique allows thin sheets to be sculpted without requiring sharp folds, enabling structure in a broad range of materials for a versatile and reconfigurable thin-sheet engineering design scheme. Simple closed structures from cylindrical loops to complex shapes like the Möbius loop are constructed and modeled through the balance between deformation and adhesion. Importantly, the balance can be used to create experimental measurements of elasticity in complex morphologies. More practically, kuttsukigami is demonstrated to encapsulate objects from the kitchen to micro scales and to build on-demand logic gates through sticky electronic sheets for truly reusable, reconfigurable devices. 
    more » « less
  2. Abstract Electrical and mechanical integration approaches are essential for emerging hybrid electronics that must robustly bond rigid electrical components with flexible circuits and substrates. However, flexible polymeric substrates and circuits cannot withstand the high temperatures used in traditional electronic processing. This constraint requires new strategies to create flexible materials that simultaneously achieve high electrical conductivity, strong adhesion, and processibility at low temperature. Here, an electrically conductive adhesive is introduced that is flexible, electrically conductive (up to 3.25×105S m−1) without sintering or high temperature post‐processing, and strongly adhesive to various materials common to flexible and stretchable circuits (fracture energy 350 <Gc< 700 J m−2). This is achieved through a multiphase soft composite consisting of an elastomeric and adhesive epoxy network with dispersed liquid metal droplets that are bridged by silver flakes, which form a flexible and conductive percolated network. These inks can be processed through masked deposition and direct ink writing at room temperature. This enables soft conductive wiring and robust integration of rigid components onto flexible substrates to create hybrid electronics for emerging applications in soft electronics, soft robotics, and multifunctional systems. 
    more » « less
  3. Focusing particles into a tight stream is critical for many microfluidic particle-handling devices such as flow cytometers and particle sorters. This work presents a fundamental study of the passive focusing of polystyrene particles in ratchet microchannels via direct current dielectrophoresis (DC DEP). We demonstrate using both experiments and simulation that particles achieve better focusing in a symmetric ratchet microchannel than in an asymmetric one, regardless of the particle movement direction in the latter. The particle focusing ratio, which is defined as the microchannel width over the particle stream width, is found to increase with an increase in particle size or electric field in the symmetric ratchet microchannel. Moreover, it exhibits an almost linear correlation with the number of ratchets, which can be explained by a theoretical formula that is obtained from a scaling analysis. In addition, we have demonstrated a DC dielectrophoretic focusing of yeast cells in the symmetric ratchet microchannel with minimal impact on the cell viability. 
    more » « less